Synthesis and Spectral Analysis of 8-Substituted Dinaphtho[2,1-d:1',2'-g] [1,3,6,2]dioxathiaphosphocin 8-Oxides

B. Sankara Reddy, K. Anuradha, and C. Devendranath Reddy*

Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India

N. Jagadeesh Kumar and M. Krishnaiah

Department of Physics, Sri Venkateswara University, Tirupati 517 502, India

K. Darrell Berlin

Department of Chemistry, Oklahoma State University, Stillwater, OK 74078

Received 20 August 1994; revised 10 February 1995

ABSTRACT

Synthesis and spectral analysis of several 8-substituted dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin 8-oxides have been described. An X-ray crystallographic study of 8-(2',3'- dimethylphenoxy)dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin 8-oxide has indicated that, in the solid state, the dioxathiaphosphocin ring is in a distorted-boatlike conformation with the P=O group and bridged S atom directed away from each other. Electron impact mass spectra showed M⁺ and (M–OR)⁺ ions, containing the dioxathiaphosphocin ring system, confirming the structures of the esters. © 1995 John Wiley & Sons, Inc.

INTRODUCTION

Since a large number of dioxathiaphosphocins are potential antioxidants and stabilizers in oils and polymers [1], syntheses and spectral analyses of 8substituted dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin 8-oxides (**3a-3n**) were accomplished. A distorted boat-chair conformation was

Heteroatom Chemistry

© 1995 John Wiley & Sons, Inc.

suggested for **3** on the basis of an X-ray diffraction study of a crystal of one member, **3e**, of the series.

RESULTS AND DISCUSSION

The condensation of bis(2-hydroxy-1-naphthyl)sulfide (1) [2] and aryl phosphoro-dichloridates or phenyl/cyclohexyl phosphonic dichloride (2) in equimolar quantities in the presence of triethylamine in dry toluene at $55-65^{\circ}$ C produced **3a-3k** (Scheme 1). The compounds **31-3n** were synthesized using the intermediate acid chloride, 8-chlorodinaphtho [2,1-d:1',2'-g] [1,3,6,2] dioxathiaphosphocin 8-oxide (4). The intermediate was prepared by

^{*}To whom correspondence should be addressed.

SCHEME 1

TABLE 1	Physical Data o	f 8-Substituted D)inaphtho[2,1-d: 1',	2'-g][1, 3, 6,	, 2]-dioxathiaphosphocin	8-Oxides (3)
---------	-----------------	-------------------	----------------------	----------------	--------------------------	--------------

		Vield	Found (Re	quired) %				
Compound ^a	<i>m</i> · n		·			P–O–Caromati		с ³¹ Р ММР ⁶
(Formula)	(°C)	(%)	С	Н	<i>P=0</i>	<i>P–0</i>	0-C	(CDCl ₃)
3a	186-87	68	68.35	3.84	1300	1235	970	-17.24
(C ₂₆ H ₁₇ O₄SP)			(68.42)	(3.75)				
3b	223-24	73	68.81	4.18	1300	1220	970	-17.15
(C ₂₇ H ₁₉ O ₄ SP)			(68.93)	(4.07)				
3c	225–26	74	68.95	4.23	1290	1220	975	-17.01
(C ₂₇ H ₁₉ O ₄ SP)			(68.93)	(4.07)				
3d	209–10	76	68.83	4.15	1310	1210	985	-17.04
(C ₂₇ H ₁₉ O ₄ SP)			(68.93)	(4.07)				
3e	212-13	85	69.54	4.42	1300	1220	970	-17.09
$(C_{28}H_{21}O_4SP)$			(69.41)	(4.37)				
3f	243-44	77	69.36	4.39	1310	1210	950	-17.15
$(C_{28}H_{21}O_4SP)$			(69.41)	(4.37)				
30	224-25	78	69.29	4.26	1290	1220	960	-17.21
$(\tilde{C}_{28}H_{21}O_4SP)$			(69.41)	(4.37)				
3h	217-18	72	64.17	3.62	1290	1200	960	-17.02
(C ₂₇ H ₁₈ ClO ₄ SP)			(64.23)	(3.59)				
3i	198–99	71	63.68	3.37	1310	1210	975	-17.30
(C ₂₆ H ₁₆ ClO₄SP)			(63.62)	(3.29)				
31	194–95	75	70.82	3.77	1310	1220	950	+12.41
(C ₂₆ H ₁₇ O ₃ SP)			(70.90)	(3.89)				
3k	215-16	72	69.83	5.26	1300	1235	965	+28.05
(C ₂₆ H ₂₃ O ₃ SP)			(69.94)	(5.19)				
31	250-51	71	66.52	4.78	1310	1220	970	_
$(C_{24}H_{20}O_3NSP)$			(66.50)	(4.65)				
3m	231-32	74	66.94	5.14	1290	1210	960	_
(C ₂₅ H ₂₂ O ₃ NSP)			(67.10)	(4.96)				
3n	189-90	75	63.98	4.54	1310	1200	980	_
(C ₂₄ H ₂₀ O ₄ NSP)			(64.14)	(4.49)				

"Recrystallized from isopropanol.

 $^{\rm A31}{\rm P}$ chemical shifts were expressed in $\delta,$ from 85% H_3PO_4 as external standard.

the condensation of 1 with phosphorus oxychloride in the presence of triethylamine in dry toluene at $40-50^{\circ}$ C. This intermediate, on subsequent reaction with cyclic amines, **51–5n**, in situ, afforded the corresponding products (**31–3n**). Physical properties, characteristic IR frequencies [3], and ^{31}P NMR data are shown in Table 1.

The ¹H NMR spectra (Table 2) exhibited only six signals in the region δ 7.30–8.98 for 12 protons of dinaphthodioxathiaphosphocin moieties [4]. This

Compound	H(1/15)	H(2/14)	H(3/13)	H(4/12)	H(5/11)	H(6/10)	RH
3a	8.82	7.64	7.48	7.78	7.80	7.32	7.23–7.42 (m, 5H, Ar–H)
	(8.3)	(7.4, 7.0)	(7.4, 7.1)	(7.8)	(7.4)	(7.6)	
3b	8.82	7.63	7.46	7.78	7.80	7.30	7.07–7.29 (m, 4H, Ar–H)
	(8.3)	(8.6, 7.1)	(7.6, 7.3)	(8.7)	(7.5)	(7.8)	2.43 (s, 3H, CH ₃)
3c	8.82	7.62	7.49	7.78	7.80	7.30	7.04–7.19 (m, 4H, Ar–H)
	(8.3)	(8.2, 7.0)	(7.4, 7.0)	(8.4)	(7.4)	(7.4)	2.40 (s, 3H, CH ₃)
3d	8.83	7.62	7.49	7.79	7.81	7.30	7.13–7.25 (m, 4H, Ar–H)
	(8.9)	(7.1, 6.8)	(7.3, 7.0)	(9.2)	(7.7)	(7.4)	2.38 (s, 3H, CH ₃)
3e	8.82	7.60	7.45	7.76	7.77	7.32	7.07–7.10 (m, 3H, Ar–H)
							2.30 (s, 3H, CH ₃); 2.27 (s,
	(8.3)	(7.1, 7.0)	(8.0, 7.1)	(8.8)	(8.0)	(7.6)	3H, CH ₃)
3f	8.84	7.64	7.49	7.78	7.80	7.34	7.05–7.12 (m, 3H, Ar–H)
	(8.8)	(7.2, 7.1)	(8.0, 7.1)	(7.7)	(7.0)	(7.4)	2.49 (s, 6H, CH ₃)
3g	8.84	7.64	7.48	7.78	7.80	7.36	7.10–7.20 (m, 3H, Ar–H)
•	(8.6)	(7.2, 7.0)	(8.0, 7.2)	(7.4)	(8.2)	(7.7)	2.23 (s, 6H, CH ₃)
3h	8.83	7.64	7.50	7.78	7.82	7.39	7.11-7.42 (m, 3H, Ar-H)
	(8.3)	(8.2, 7.0)	(7.2, 7.0)	(7.8)	(8.4)	(7.5)	2.39 (s, 3H, CH ₃)
3i	8.83	7.62	7.49	7.79	7.81	7.42	7.12–7.30 (m, 4H, Ar–H)
	(8.3)	(7.1, 6.9)	(7.8, 7.2)	(8.8)	(8.3)	(7.4)	
3i	8.86	7.78	7.58	8.03	8.08	7.48	7.70-8.16 (m, 5H, Ar-H)
•	(8.7)	(8.6, 7.1)	(7.8, 6.8)	(7.9)	(8.4)	(8.8)	
3k	8.81	7.75	7.58	8.01	8.08	7.48	1.34-2.23 [m, 11H, CH(CH ₂) ₅]
	(8.7)	(7.7, 7.4)	(7.7, 7.3)	(7.8)	(9.1)	(8.8)	
31	8.96	7.74	7.51	7.93	7.99	7.42	3.00-3.18 (m, 4H, 2', 5'-CH ₂)
	(8.3)	(8.2, 7.3)	(7.8, 7.3)	(7.9)	(8.8)	(8.8)	1.14-1.20 (m. 4H. 3', 4'-CH ₂)
3m	`8.9 ⁷	7.78	7.52	7.92	7.98	7.40	3.52-3.62 (m. 4H. 2', 6'-CH.)
							1.22-1.66 (m. 6H. 3', 4', 5'-
	(8.4)	(8.3, 7.2)	(7.9, 7.3)	(8.0)	(8.7)	(8.8)	CH ₂)
3n	`8.9 8	7.73	7.52	`7.9́4	7.98	7.38	3.74–3.76 (m, 4H, 3′, 5′–CH₂)
	(8.8)	(8.3, 7.1)	(7.7, 7.3)	(8.2)	(9.1)	(8.8)	3.34–3.60 (m, 4H, 2', 6'-CH ₂)

TABLE 2 ¹H Chemical Shifts (δ) of 8-Substituted Dinaphtho[2, 1-d: 1', 2'-g][1, 3, 6, 2] dioxathiaphosphocin 8-Oxides (3)^{a,b}

^aRecorded in DCCl₃.

^bValues in parentheses are coupling constants, J in Hz.

suggested a symmetrical arrangement of the two naphthyl units around the central dioxathiaphosphocin ring. The aromatic and aliphatic protons of 8-substituted moieties showed signals in the regions δ 7.04–8.16 and δ 1.15–3.76, respectively [5]. In the ¹³C NMR spectra (Table 3), also only 10 signals appeared for the 20 carbon atoms of the dinaphthodioxathiaphosphocin moieties, which also confirms the symmetrical disposition of the naphthyl groups [4]. The ¹³C chemical shifts were in-

FIGURE 1 The molecular diagram and the atom-numbering scheme.

FIGURE 2 Packing of the molecules viewed down the "C" axis.

Carbons	3a	3b	3c	3d	3e	3f	3g	3h	3 i	3j	3k	31	3n
C(1,15)	128.5	128.4	128.4	128.4	128.4	128.4	128.4	128.5	128.5	128.7	128.6	128.4	128.5
C(2,14)	128.1	128.0	128.0	127.9	127.9	128.0	127.9	128.1	128.0	128.3	128.3	127.8	127.8
C(3,13)	125.7	125.7	125.7	125.7	125.6	125.7	125.7	125.7	125.7	125.0	125.0	125.2	125.2
C(4,12)	131.4	131.4	131.4	131.4	131.4	131.4	131.4	131.5	131.4	131.4	131.3	131.5	131.2
C(5,11)	126.1	126.1	126.0	125.9	125.9	125.9	126.0	126.1	126.1	126.1	126.0	125.7	125.6
C(6,10)	119.9	119.9	119.9	120.0	119.9	119.9	120.0	119.9	119.9	120.8	120.5	122.2	122.4
	(6.0)	(6.0)	(6.0)	(6.3)	(5.9)	(5.9)	(5.8)	(6.1)	(6.0)	(4.9)	,	(3.8)	(3.3)
C(6a,9a)	152.5	152.5	152.6	152.5	151.7	152.6	152.6	152.4	152.5	152.1	152.5	152.8	153.2
	(9.3)	(9.4)	(9.4)	(9.3)	(9.4)	(9.4)	(9.4)	(9.4)	(9.3)	(11.3)	(9.7)	(9.5)	
C(15b,16a)	119.4	119.4	119.4	119.4	119.4	119.4	119.5	119.4	119.4	119.4	119.0	120.5	120.7
, , , , , , , , , , , , , , , , , , ,	(4.9)	(5.0)	(4.9)	(5.0)	(4.9)	(5.0)		(4.9)	(4.9)	(4.6)	(5.1)	(5.3)	(5.3)
C(4a,11a)	131.9	131.9	131.9	131.9	131.9	131.9	131.9	132.0	131.9	131.9	131.8	131.2	131.4
C(15a,16b)	134.8	134.8	134.8	134.8	134.8	134.9	134.8	134.8	134.8	134.2	134.3	134.5	134.6
								(1.6)	(1.7)			(1.2)	
C(1')	150.4	149.1	150.2	148.3	149.1	148.5	148.2	147.6	146.6	131.4	35.6		_
	(7.9)	(8.3)		(8.0)	(8.3)	(9.4)		(7.9)		(7.4)	(141.9)		
C(2')	120.5	129.9	120.9	120.2	128.3	130.4	121.3	130.7	130.8	131.0	25.7	44.8	44.2
、 ,	(4.3)		(4.9)	(4.6)		(4.8)	(4.9)	(4.8)		(10.5)	(4.9)	(4.5)	
C(3')	129.9	131.6	140.2	130.3	139.1	129.1	138.4	131.5	128.1	129.3	25.9	23.5	65.9
- (-)											(17.2)	(11.2)	(4.7)
C(4')	125.7	127.2	126.5	135.4	126.1	125.6	134.0	131.2	126.5	133.5	26.9	23.5	
												(11.2)	
C(5')	129.9	127.2	129.5	130.3	127.1	129.1	130.6	127.0	125.7	129.3	25.90	44.8	65.9
- (-)											(17.2)	(4.3)	(4.7)
C(6')	120.5	120.2	117.3	120.2	117.7	130.4	117.4	121.3	121.8	131.0	25.7	/	44.2
-(-)	(4.3)	(2.4)	(4.8)		(2.4)		(4.7)	(2.3)	(2.6)	(10.5)	(4.9)		
Methvi	(()	, -/		· · /		· · /	、 - /	、 - <i>/</i>	、 -)	` '		
Carbons		16.2	21.3	20.7	12.6, 20.2	17.3	19.9, 19.1	16.4					

TABLE 3	¹³ C Chemical	Shifts	(δ) of	8-Substituted	Dinaphtho[2,	1-d:	1', 2'-	g][1, 3,	6, 2]	dioxathiaphosphocir	8-Oxides
(3) ^{<i>a,b</i>}											

^aValues in parentheses are coupling constants J_{PC} in Hz. ^bRecorded in DCCl₃.

TABLE 4 Mass Spectral Data (% of Important Ions) of Certain Members of 3

Compound	<i>M</i> ⁺(%)	(M–R)+ 363	[(M-R)-PO ₂] ⁺ 300	[(M−RPO₂)−S] ⁺ 268	$[(M-R)-C_{10}H_6O)]^+$ 221	$[(M-R)-C_{10}H_6S]^+$ 205	[(M−R)−C ₁₀ H ₆ OS] ⁺ 189
3a	456 (63.4)	100	20.4	14.9	2.9	59.3	7.1
3b	470 (44.9)	100	2.5	7.5	1.3	27.5	0.6
3c	470 (47.6)	100	10.9	14.6	2.5	52.4	9.7
3d	470 (47.8)	100	25.4	21.3	2.6	55.2	4.6
3e	484 (77.8)	100	11.1	8.8	11.0	77.8	11.2
3f	484 (18.3)	100	11.6	8.3	1.3	31.6	1.7
3g	484 (37.4)	100	14.6	13.4	6.2	47.6	4.9
3h	504 (20.0)	100	16.7	10.0	1.4	36.7	5.9
3i	490 (48.8)	100	14.3	11.6	1.8	51.2	6.9
3i	440 (100)	_	4.8	_		37.2	11.9
3k	445 (88.2)	16.2	11.2	10.8	0.9	100.0	28.5
3n	449 (14.3)	17.7	12.2	21.4	9.5	45.2	52.4

TABLE 5 Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å² × 10³) for **3e**

	x	У	Z	U(eq)ª
P(8)	8330(1)	6073(1)	3154(1)	63(1)
S(16)	8131(1)	6257(1)	558(1)	62(1)
O(17)	8154(2)	7009(1)	3184(2)	74(1)
O(7)	7340(2)	5504(1)	2454(2)	59(1)
O(9)	9382(2)	5796(2)	2781(2)	80(1)
O(18)	8599(2)	5570(2)	4260(2)	78(1)
C(6a)	6512(2)	5795(2)	1559(2)	53(1)
C(6)	5423(3)	5695(2)	1634(3)	67(1)
C(5)	4561(3)	5943(2)	806(3)	77(1)
C(4a)	4733(2)	6301(2)	-141(3)	66(1)
C(4)	3833(3)	6569(3)	-1006(4)	85(1)
C(3)	4007(4)	6914(3)	-1905(4)	96(1)
C(2)	5099(4)	7014(2)	-1996(3)	86(1)
C(1)	59 9 4(3)	6755(2)	-1186(3)	69(1)
C(16b)	5840(2)	6388(2)	-231(2)	54(1)
C(16a)	6739(2)	6110(2)	644(2)	50(1)
C(15b)	8778(2)	5228(2)	982(2)	53(1)
C(15a)	8809(2)	4543(2)	243(3)	53(1)
C(15)	8314(2)	4614(2)	-872(3)	65(1)
C(14)	8381(3)	3940(3)	-1553(3)	81(1)
C(13)	8945(3)	3162(3)	-1146(4)	89(1)
C(12)	9435(3)	3072(2)	-92(4)	80(1)
C(11a)	9397(2)	3755(2)	645(3)	63(1)
C(11)	9943(3)	3684(2)	1744(3)	78(1)
C(10)	9928(3)	4350(3)	2431(3)	78(1)
C(9a)	9346(2)	5115(2)	2042(3)	65(1)
C(1′)	7852(3)	5598(2)	4925(2)	68(1)
C(2′)	7327(3)	4822(2)	5078(3)	76(1)
C(3′)	6643(4)	4856(2)	5767(3)	83(1)
C(4')	6549(4)	5621(3)	6293(3)	100(1)
C(5')	7094(4)	6374(3)	6135(3)	96(1)
C(6')	7749(3)	6370(2)	5443(3)	74(1)
C(7')	7540(5)	3994(3)	4523(4)	121(2)
C(8′)	5999(6)	4044(3)	5935(5)	135(2)

*U(eq) is	defined	as	one-third	of	the	trace	of the	orthogonalized	U
tensor.									

terpreted based on the comparison with carbon chemical shifts of 1 and related systems [4-7]. Six dinaphthyl carbons 6, 6a, 9a, 10, 15b, and 16a experienced coupling with phosphorus. The oxygen bearing-carbons C(6a) and C(9a), resonated, in the region δ 151.7–152.8 as a doublet [²J_{POC(6a,9a)} = 9.3– 11.3 Hz]. The doublet at δ 119.9–122.4 with the ${}^{3}J_{POCC} = 3.3-6.3$ Hz for each compound **3** was assigned to C(6,10). Chemical shifts at δ 119.0–120.7 with the ${}^{3}J_{POCC} = 4.6-5.3$ Hz were ascribed to C(15b,16a). Low-intensity signals in the regions δ 131.2–132.0 and δ 134.2–134.9 were attributed to the tertiary carbons C(4a,11a) and C(15a,16b). Signals for C(1,15), C(2,14), C(3,13), C(4,12), and C(5,11) occurred in the regions δ 128.4–128.7, 127.8–128.3, 125.0-125.7, 131.2-131.5, and 125.6-126.1, respectively [4]. The carbons of 8-substituted moieties showed substantial variation in their chemical shifts [4-9]. The doublets at δ 146.6–150.4 $[^{2}J_{POC(1')} = 7.4-$

TABLE 6 Bond Lengths (Å) for Nonhydrogen Atoms of 3e

"esd's in parentheses.

9.4 Hz] were ascribed to C(1') of **3a–3i**. An upfield shift of about 5 ppm for the methyl group attached to C(2') in **3b** and **3h** is due to its γ interaction with exocyclic oxygen [4,6,9]. More shielding of C(2') by 8 ppm in **3e** is the result of double γ interaction both with exocyclic oxygen and the C(3') methyl group [4,9]. In **3j**, C(1') and C(2') absorbed at δ 131.4 [J_{PC(1')} = 7.4 Hz] and 131.0 [²J_{PCC(2')} = 4.9 Hz], respectively [4]. The carbons C(1'), C(2'), and C(3') in **3k** showed couplings with phosphorus at δ 35.6 [J_{PC(C(3')} = 141.9 Hz], 25.7 [²J_{PCC(2')} = 4.9 Hz], and 25.9 [³J_{PCC(3')} = 17.2 Hz], respectively. The carbons C(2',5') and C(3',4') in **3l** coupled to phosphorus at δ 44.8 [²J_{PNC(2',5')} = 4.3 Hz] and 23.5 [³J_{PNCC(3',4')} = 11.2 Hz], while C(3',5') in **3n** resolved as a doublet at δ 65.9 [³J_{PNCC(3',5')} = 4.7 Hz] [5a].

The ³¹P NMR signals (Table 1) for the 8-aryloxy compounds **3a–3i** occurred at δ – 17.01 to – 17.30 [4,5b]. For the 8-aryl and 8-alkyl derivatives, **3j** and **3k**, the signals appeared at δ +12.41 and +28.05, respectively [5b].

Electron impact mass spectra (Table 4) exhibited M^+ and $(M-R)^+$. $(M-R)^+$ due to dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin 8-oxide ion appeared as the base peak in 8-aryloxy compounds (**3a–3i**). Other characteristic daughter ions are $[(M-R)-PO_2]^+$, $[(M-RPO_2)-S]^+$, $[(M-R)-C_{10}H_6O]^+$, $[(M-R)-C_{10}H_6S]^+$, and $[(M-R)-C_{10}H_6OS]$ at m/z 300, 268, 221, 205, and 189, respectively.

The structure of a crystal of **3e** was determined by X-ray diffraction analysis in an effort to establish the overall geometry of the system and to confirm its identity. The final positional and equivalent isotropic temperature factors of the nonhydrogen atoms are given in Table 5. The perspective view of the molecule and the atom-num-

O(17)-P(8)-O(9) O(17)-P(8)-O(18)	114.7(2) 116 82(14)	C(9a)-C(15b)-S(16)	119.1(2) ^a
O(9) - P(8) - O(18)	99.07(14)	C(15) - C(15a) - C(15b)	123.2(3)
O(17)-P(8)-O(7)	117.12(13)	C(15) - C(15a) - C(11a)	118.4(3)
O(9)-P(8)-O(7)	105.40(12)	C(15b) - C(15a) - C(11a)	118.4(3)
O(18)-P(8)-O(7)	101.26(13)	C(14)–C(15)–C(15a)	120.9(3)
C(15b)-S(16)-C(16a)	103.75(12)	C(15)-C(14)-C(13)	120.1(4)
C(6a)-O(7)-P(8)	126.1(2)	C(12) - C(13) - C(14)	120.8(4)
C(9a)-O(9)-P(8)	122.1(2)	C(13)-C(12)-C(11a)	121.2(4)
C(1')-O(18)-P(8)	121.2(2)	C(11)–C(11a)–C(12)	121.8(3)
C(16a)-C(6a)-O(7)	123.0(2)	C(11)–C(11a)–C(15a)	119.6(3)
C(16a) - C(6a) - C(6)	122.0(3)	C(12)–C(11a)–C(15a)	118.5(3)
O(7) - C(6a) - C(6)	114.9(3)	C(10)-C(11)-C(11a)	121.2(3)
C(5)-C(6)-C(6a)	119.6(3)	C(11)-C(10)-C(9a)	119.2(4)
C(6) - C(5) - C(4a)	121.4(3)	C(15b)-C(9a)-O(9)	120.1(3)
C(4) - C(4a) - C(5)	121.6(3)	C(15b)-C(9a)-C(10)	122.9(3)
C(4) - C(4a) - C(16b)	119.2(4)	O(9)-C(9a)-C(10)	117.0(3)
C(5) - C(4a) - C(16b)	119.2(3)	C(6') - C(1') - C(2')	123.1(4)
C(3) - C(4) - C(4a)	121.1(4)	C(6') - C(1') - O(18)	118.7(3)
C(4) - C(3) - C(2)	120.1(4)	C(2')-C(1')-O(18)	118.0(3)
C(1) - C(2) - C(3)	120.9(4)	C(1') - C(2') - C(3')	117.0(3)
C(2) - C(1) - C(16b)	120.5(4)	C(1') - C(2') - C(7')	119.4(4)
C(1) - C(16b) - C(4a)	118.2(3)	C(3') - C(2') - C(7')	123.5(4)
C(1) - C(16b) - C(16a)	123.2(3)	C(4') - C(3') - C(2')	119.9(4)
C(4a) - C(16b) - C(16a)	118.6(3)	C(4') - C(3') - C(8')	119.9(4)
C(6a) - C(16a) - C(16b)	119.1(2)	$C(2^{\circ}) = C(3^{\circ}) = C(8^{\circ})$	120.1(4)
C(6a) - C(16a) - S(16)	121.9(2)	$C(3^{\circ}) - C(4^{\circ}) - C(5^{\circ})$	121.4(4)
C(10D) - C(10a) - S(10)	118.8(2)	$C(6^{\circ}) - C(5^{\circ}) - C(4^{\circ})$	120.1(4)
C(9a) = C(15b) = C(15a)	(3)0.011	U(1) = U(0) = U(0)	118.3(4)

TABLE 7 Bond Angles (°) for 3e

"esd's in parentheses.

bering scheme are shown in Figure 1. The bond lengths and bond angles are given in Tables 6 and 7, respectively.

In the dioxathiaphosphocin ring system, the endo- and exocyclic P–O distances P(8)–O(7) [1.576 Å], P(8)–O(9) [1.572 Å], P(8)–O(18) [1.575 Å] are comparable with the value of (1.581 Å) reported for the dinaphthodioxaphosphocin ring [4]. The P=O bond length [1.441 Å] agrees with the value of (1.45 Å) found in the dibenzodithiaphosphepin ring [10] and is slightly shorter than those of other dinaphthodioxaphosphocin rings [4,11]. The mean C–S bond distance (1.779 Å) is slightly different from the value of (1.784 Å) obtained in the eight-membered dioxathiaphosphocin ring [12]. The endocyclic angle O(7)–P(8)–O(9) [105.4°] at phosphorus is comparable with that of eight-membered cyclic organophosphorus compounds [4,11,13,14].

The mean plane passing through the heterocyclic ring showed that P(8), C(16a), S(16), and O(9)are above and O(7), C(6a), C(15b), and C(9a) are below the plane. The torsion angles of the heterocyclic ring (Table 8) provide additional evidence that the ring is not planar, but puckered. This ring assumed a distorted-boat-like conformation due to its fusion to the bulky naphthyl groups. This structure is stabilized by van der Waals forces. Packing of the molecules in the unit cell viewed down the 'c' axis is shown in Figure 2. Least-square planes and deviations, hydrogen coordinates and isotropic displacement parameters, bond lengths and bond angles for hydrogen atoms, crystal data and structure refinement, and anisotropic displacement parameters for nonhydrogen atoms are given in Tables 9, 10, 11, 12 and 13, respectively.

EXPERIMENTAL

Melting points are uncorrected. Microanalyses and electron impact mass spectra were recorded by RSIC, Central Drug Research Institute, Lucknow, India. IR spectra were recorded as KBr pellets on a Perkin-Elmer 683 unit. ¹H, ¹³C, and ³¹P NMR spectra were recorded on a Varian XL-300 MHz spectrometer operating at 300, 75, and 121 MHz, respectively, in DCCl₃ solutions and were referenced from TMS (¹H and ¹³C) or 85% H₃PO₄ (³¹P).

8-(Phenoxy)dinaphtho[2,1-d:1',2'g][1,3,6,2]dioxathiaphosphocin 8-Oxide (**3a**)

Phenyl phosphorodichloridate (**2a**, 2.1 g, 0.01 mol) in dry toluene (30 mL) was added dropwise over a

TABLE 8 Torsion Angles (°) for 3e

O(17)-P(8)-O(7)-C(6a)	26.78	(0.26) ^a	C(9a)-C(15b)-C(15a)-C(11a)	2.27 (0.36)
O(9)-P(8)-O(7)-C(6a)	-102.19	(0.23)	S(16)-C(15b)-C(15a)-C(11a)	176.68 (0.19)
O(18)P(8)O(7)-C(6a)	155.01	(0.21)	C(15b) - C(15a) - C(15) - C(14)	179.00 (0.27)
O(17)-P(8)-O(9)-C(9a)	-135.47	(0.26)	C(11a)-C(15a)-C(15)-C(14)	0.83 (0.40)
O(18)-P(8)-O(9)-C(9a)	99.32	(0.27)	C(15a) - C(15) - C(14) - C(13)	0.28 (0.47)
O(7) - P(8) - O(9) - C(9a)	-5.11	(0.29)	C(15) - C(14) - C(13) - C(12)	-0.83 (0.52)
O(17) - P(8) - O(18) - C(1')	57.64	0.28)	C(14)-C(13)-C(12)-C(11a)	0.22 (0.53)
O(9) - P(8) - O(18) - C(1')	-178.61	(0.23)	C(13) - C(12) - C(11a) - C(11)	-177.44(0.32)
O(7) - P(8) - O(18) - C(1')	-70.79	(0.25)	C(13) - C(12) - C(11a) - C(15a)	0.90 (0.46)
P(8) = O(7) = C(6a) = C(16a)	60.80	(0.34)	C(15) - C(15a) - C(11a) - C(11)	176.97 (0.27)
P(8) - O(7) - C(6a) - C(6)	-122.76	(0.24)	C(15b)-C(15a)-C(11a)-C(11)	-1.29(0.38)
C(16a) - C(6a) - C(6) - C(5)	-2.59	(0.46)	C(15)-C(15a)-C(11a)-C(12)	-1.40(0.38)
O(7) - C(6a) - C(6) - C(5)	-179.06	(0.27)	C(15b)-C(15a)-C(11a)-C(12)	-179.66(0.25)
C(6a) - C(6) - C(5) - C(4a)	0.22	(0.49)	C(12)-C(11a)-C(11)-C(10)	178.03 (0.33)
C(6) - C(5) - C(4a) - C(4)	-179.47	(0.31)	C(15a) - C(11a) - C(11) - C(10)	-0.28(0.49)
C(6) - C(5) - C(4a) - C(16b)	1.04	(0.47)	C(11a)-C(11)-C(10)-C(9a)	0.84 (0.54)
C(5)-C(4a)-C(4)-C(3)	179.68	(0.34)	C(15a) - C(15b) - C(9a) - O(9)	176.60 (0.23)
C(16b) - C(4a) - C(4) - C(3)	-0.83	0.50	S(16) - C(15b) - C(9a) - O(9)	2.03 (0.36)
C(4a)-C(4)-C(3)-C(2)	-0.07	(0.57)	C(15a) - C(15b) - C(9a) - C(10)	-1.80(0.43)
C(4) - C(3) - C(2) - C(1)	0.89	(0.57)	S(16) - C(15b) - C(9a) - C(10)	-176.37(0.25)
C(3) - C(2) - C(1) - C(16b)	-0.79	(0.51)	P(8) - O(9) - C(9a) - C(15b)	70.75 (0.36)
C(2)-C(1)-C(16b)-C(4a)	-0.12	(0.43)	P(8) - O(9) - C(9a) - C(10)	-110.76 (0.30)
C(2) - C(1) - C(16b) - C(16a)	-179.64	(0.28)	C(11)-C(10)-C(9a)-C(15b)	0.22 (0.52)
C(4) - C(4a) - C(16b) - C(1)	0.91	0.41)	C(11)-C(10)-C(9a)-O(9)	-178.22 (0.31)
C(5) - C(4a) - C(16b) - C(1)	-179.59	0.28)	P(8) - O(18) - C(1') - C(6')	-70.76 (0.35)
C(4) - C(4a) - C(16b) - C(16a)	-179.55	(0.26)	P(8) - O(18) - C(1') - C(2')	113.90 (0.29)
C(5) - C(4a) - C(16b) - C(16a)	-0.04	(0.41)	C(6') - C(1') - C(2') - C(3')	2.02 (0.52)
O(7) - C(6a) - C(16a) - C(16b)	179.74	(0.23)	O(18) - C(1') - C(2') - C(3')	177.14 (0.30)
C(6) - C(6a) - C(16a) - C(16b)	3.55	(0.40)	C(6') - C(1') - C(2') - C(7')	-176.55 (0.36)
O(7) - C(6a) - C(16a) - S(16)	-5.04	(0.37)	O(18) - C(1') - C(2') - C(7')	-1.43 (0.48)
C(6)-C(6a)-C(16a)-S(16)	178.77	(0.22)	C(1')-C(2')-C(3')-C(4')	-2.65 (0.56)
C(1)-C(16b)-C(16a)-C(6a)	177.34	0.26)	C(7') - C(2') - C(3') - C(4')	175.85 (0.40)
C(4a) - C(16b) - C(16a) - C(6a)	-2.18	(0.38)	C(1') - C(2') - C(3') - C(8')	177.17 (0.38)
C(1) - C(16b) - C(16a) - S(16)	1.97	(0.36)	C(7') - C(2') - C(3') - C(8')	-4.33 (0.63)
C(4a) - C(16b) - C(16a) - S(16)	-177.55	(0.20)	C(2') - C(3') - C(4') - C(5')	1.75 (0.68)
C(15b)-S(16)-C(16a)-C(6a)	51.26	0.26)	C(8') - C(3') - C(4') - C(5')	-178.07 (0.45)
C(15b)-S(16)-C(16a)-C(16b)	-133.51	0.22)	C(3') - C(4') - C(5') - C(6')	-0.04 (0.71)
C(16a)-S(16)-C(15b)-C(9a)	-93.65	(0.24)	C(2') - C(1') - C(6') - C(5')	-0.38 (0.54)
C(16a)-S(16)-C(15b)-C(15a)	91.97	(0.22)	O(18) - C(1') - C(6') - C(5')	-175.46 (0.32)
C(9a)-C(15b)-C(15a)-C(15)	-175.90	(0.25)	C(4') - C(5') - C(6') - C(1')	-0.65 (0.61)
S(16)-C(15b)-C(15a)-C(15)	-1.49	(0.35)		· · · /

^aesd's in parentheses.

period of 20 minutes to a stirred solution of bis(2hydroxy-1-naphthyl)sulfide (1, 3.18 g, 0.01 mol) and triethylamine (2.02 g, 0.02 mol) in dry toluene (70 mL) at room temperature. After completion of the addition, the reaction mixture was slowly heated to $55-65^{\circ}$ C and was maintained at this temperature for 6 hours. TLC was used to monitor the progress of the reaction. Separation of triethylamine hydrochloride by filtration afforded a filtrate that was evaporated under reduced pressure to give a solid residue. The crude product was washed with water and recrystallized from 2-propanol, yield 60%, mp 186–87°C. The other compounds **3b–3k** were also prepared in the same fashion.

8-(1-Morpholinyl)dinaphtho [2,1-d:1',2'g][1,3,6,2]dioxathiaphosphocin 8-Oxide (**3n**)

A solution of phosphorus oxychloride (1.53 g, 0.01 mol) in dry toluene (30 mL) was added dropwise to a stirred solution of bis(2-hydroxy-1-naph-thyl)sulfide (1, 3.18 g, 0.01 mol) and triethylamine (2.02 g, 0.02 mol) in dry toluene (70 mL) at $0-5^{\circ}$ C. After having been stirred for 4 hours at $40-50^{\circ}$ C, the reaction mixture by TLC analysis indicated the formation of the 8-chloro-dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin 8-oxide (4). The reaction mixture was cooled to $10-20^{\circ}$ C, and a solution of morpholine (5n, 0.87 g, 0.01 mol) and triethylamine (1.01 g, 0.01 mol) in toluene (20 mL)

TABLE	9 L	east-Square	es Pla	anes ()	x , y ,	z in	Crystal	Coor
dinates)	and	Deviations	from	Them	of 3	e		

Plane 1 2.837 (0.012) x + 14.763 (0.008) y + 0.049 (0.011) z = 10.764 (0.009) *a 0.580 (0.002) P(8) * -0.544 (0.002) O(7) * -0.354 (0.002) C(6a) * 0.171 (0.002) C(16a) * 0.783 (0.002) S(16) * -0.551 (0.002) C(15b) * -0.551 (0.002) C(9a) * 0.468 (0.002) O(9) Rms deviation of fitted atoms = 0.528Plane 2 8.909 (0.008) x - 3.095 (0.027) y + 5.812 (0.010) z =7.928 (0.019) Angle to previous plane (with approximate esd) = 89.40 (0.12)-0.554 (0.002) P(8) * 0.485 (0.002) O(18) * 0.197 (0.003) C(1') * 0.058 (0.003) C(2') * -0.161 (0.003) C(3') * -0.177 (0.004) C(4') * -0.015 (0.003) C(5') * 0.167 (0.003) C(6') Rms deviation of fitted atoms = 0.289Plane 3 11.341 (0.008) x + 5.894 (0.012) y - 5.006 (0.008) z = 12.574 (0.007) Angle to previous plane (with approximate esd) = 61.71(0.07) * -0.029 (0.002) C(15b) * -0.027 (0.002) C(15a) * 0.011 (0.002) C(15) * 0.031 (0.003) C(14) * 0.008 (0.003) C(13) * -0.017 (0.003) C(12) * -0.026 (0.003) C(11a) * 0.001 (0.003) C(11) * 0.032 (0.003) C(10) * 0.018 (0.002) C(9a) Rms deviation of fitted atoms = 0.022Plane 4 -0.752 (0.012) x + 13.941 (0.008) y + 5.107 (0.008) z = 8.360 (0.009)Angle to previous plane (with approximate esd) = 75.92(0.07)* 0.024 (0.002) C(6a) * 0.005 (0.003) C(6) * -0.006 (0.003) C(5) * -0.004 (0.003) C(4a)

- * -0.005 (0.003) C(4)
- * 0.004 (0.003) C(3) * 0.015 (0.003) C(2)
- * -0.001 (0.003) C(1)
- * -0.012 (0.002) C(16b)
- * -0.021 (0.002) C(16a)

Rms	deviation	of	fitted	atoms	=	0.012	
Rms	deviation	of	fitted	atoms	=	0.012	

TABLE	10	Hydrogen	Coordina	ates	(×10 ⁴)	and	Isotropic
Displace	men	t Paramete	ers (Ų ×	10 ³)	of 3e		

	X	у	Z	U(eq)
H(6)	5292(3)	5458(2)	2253(3)	81
H(5)	3836(3)	5877(2)	862(3)	92
H(4)	3107(3)	6506(3)	-954(4)	102
H(3)	3404(4)	7086(3)	-2468(4)	115
H(2)	5214(4)	7261(2)	-2616(3)	103
H(1)	6711(3)	6819(2)	-1263(3)	83
H(15)	7935(2)	5127(2)	-1149(3)	78
H(14)	8053(3)	3997(3)	-2287(3)	98
H(13)	8979(3)	2704(3)	-1613(4)	106
H(12)	9807(3)	2552(2)	161(4)	96
H(11)	10323(3)	3168(2)	2004(3)	93
H(10)	10301(3)	4297(3)	3157(3)	94
H(4')	6105(4)	5633(3)	6767(3)	120
H(5')	7017(4)	6887(3)	6501(3)	115
H(6′)	8116(3)	6878(2)	5324(3)	89
H(7'a)	6938(17)	3900(15)	3888(19)	182
H(7′b)	7590(35)	3503(5)	5001(13)	182
H(7'c)	8227(18)	4052(11)	4327(29)	182
H(8'a)	6430(17)	3527(4)	5900(36)	203
H(8'b)	5305(17)	4017(16)	5384(22)	203
H(8′c)	5854(33)	4076(15)	6627(16)	203

TABLE 11 Bond Lengths (Å) and Bond Angles (°) for Hydrogen Atoms of 3e

C(6)-H(6)	0.93	C(10)-H(10)	0.93
C(5)-H(5)	0.93	C(4')-H(4')	0.93
C(4)H(4)	0.93	C(5')-H(5')	0.93
C(3)-H(3)	0.93	C(6')-H(6')	0.93
C(2)-H(2)	0.93	C(7')-H(7'a)	0.96
C(1)-H(1)	0.93	C(7')-H(7'b)	0.96
C(15)-H(15)	0.93	C(7')-H(7'c)	0.96
C(14)-H(14)	0.93	C(8')-H(8'a)	0.96
C(13)-H(13)	0.93	C(8')-H(8'b)	0.96
C(12)-H(12)	0.93	C(8')-H(8'c)	0.96
C(11)-H(11)	0.93		
C(5)-C(6)-H(6)	120.2(2)	C(13)-C(12)-H(12)	119.4(2)
C(6a)-C(6)-H(6)	120.2(2)	C(11a)-C(12)-H(12)	119.4(2)
C(6)-C(5)-H(5)	119.3(2)	C(10)-C(11)-H(11)	119.4(2)
C(4a)-C(5)-H(5)	119.3(2)	C(11a)C(11)H(11)	119.4(2)
C(3) - C(4) - H(4)	119.4(2)	C(11)-C(10)-H(10)	120.4(2)
C(4a) - C(4) - H(4)	119.4(3)	C(9a)-C(10)-H(10)	120.4(2)
C(4) - C(3) - H(3)	120.0(2)	C(3')-C(4')-H(4')	119.3(3)
C(2)-C(3)-H(3)	120.0(3)	C(5')C(4')-H(4')	119.3(3)
C(1)-C(2)-H(2)	119.6(3)	C(6')–C(5')–H(5')	119.9(2)
C(3)-C(2)-H(2)	119.6(3)	C(4')-C(5')-H(5')	119.9(3)
C(2)-C(1)-H(1)	119.8(3)	C(1')-C(6')-H(6')	120.9(2)
C(16b)–C(1)–H(1)	119.8(2)	C(5')-C(6')-H(6')	120.9(2)
C(14)-C(15)-H(15)	119.5(2)	C(2')-C(7')-H(7'a)	109.5(3)
C(15a)-C(15)-H(15)	119.5(2)	C(2')-C(7')-H(7'b)	109.5(2)
C(15)-C(14)-H(14)	119.9(2)	C(2')-C(7')-H(7'c)	109.5(3)
C(13)-C(14)-H(14)	119.9(2)	C(3')-C(8')-H(8'a)	109.5(3)
C(12)-C(13)-H(13)	119.6(2)	C(3')-C(8')-H(8'b)	109.5(3)
C(14)–C(13)–H(13)	119.6(2)	C(3')-C(8')-H(8'c)	109.5(3)

alndicates atom used to define plane.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	3e $C_{28} H_{21} O_4 P S$ 484.4 293 (2) K 0.71069 Å Monoclinic $P2_1/c$ a = 12.461(3) Å b = 15.198(6) Å c = 12.920(2) Å B = 105.74(2) Å
Volume Z Density (calculated) Absorption coefficient F(000)	B = 105.74(2) A 2355.1(11) Å ³ 4 1.366 g/cm ³ 0.239 mm ⁻¹ 1008
Crystal size θ range for data collection Index ranges	$\begin{array}{l} 0.5 \times 0.4 \times 0.3 \text{ mm} \\ 1.70-24.97^{\circ} \\ 0 \leq h \leq 14, \ 0 \leq k \leq 17, \\ -15 \leq l \leq 14 \end{array}$
Reflections collected Independent reflections Refinement method Data/restraints/parameters Goodness of fit on F^2 Final <i>R</i> indices [$I > 2 \sigma$ (<i>I</i>)] <i>R</i> indices (all data) Extinction coefficient Largest diffraction peak and hole	3134 2990 [$R(int) = 0.0127$] Full-matrix least-squres on F^2 2990/0/310 0.777 R1 = 0.0394, wR2 = 0.1295 R1 = 0.0419, wR2 = 0.1333 0.0023(10) 0.185 and -0.278 $e \cdot Å^{-3}$

TABLE 12	Crystal	Data	and	Structure	Refinement	of	3e
----------	---------	------	-----	-----------	------------	----	----

TABLE 13 Anisotropic Displacement Parameters ($\dot{A}^2 \times 10^3$) for **3e**^a

	U11	U22	U33	U23	U13	U12
P(8)	63(1)	57(1)	70(1)	-7(1)	17(1)	-2(1)
S(16)	43(1)	49(1)	103(1)	11(1)	32(1)	0(1)
O(17)	88(2)	54(1)	82(2)	-7(1)	24(1)	-7(1)
O(7)	57(1)	54(1)	70(1)	1(1)	23(1)	-4(1)
O(9)	55(1)	92(2)	92(2)	-24(1)	18(1)	-6(1)
O(18)	85(2)	71(2)	73(1)	-1(1)	14(1)	16(1)
C(6a)	46(2)	45(1)	72(2)	-9(1)	23(1)	-5(1)
C(6)	55(2)	66(2)	91(2)	-9(2)	37(2)	-12(1)
C(5)	42(2)	75(2)	120(3)	-20(2)	35(2)	-11(2)
C(4a)	45(2)	54(2)	94(2)	-20(2)	12(2)	0(1)
C(4)	53(2)	75(2)	115(3)	-30(2)	2(2)	6(2)
C(3)	79(3)	83(3)	100(3)	-30(2)	-21(2)	24(2)
C(2)	103(3)	70(2)	74(2)	-10(2)	4(2)	20(2)
C(1)	75(2)	56(2)	77(2)	-5(2)	21(2)	7(2)
C(16b)	47(2)	40(1)	73(2)	-12(1)	13(1)	2(1)
C(16a)	39(1)	40(1)	77(2)	-6(1)	24(1)	-4(1)
C(15b)	35(1)	54(2)	73(2)	6(1)	21(1)	1(1)
C(15a)	35(1)	55(2)	75(2)	4(1)	25(1)	-2(1)
C(15)	43(2)	77(2)	82(2)	3(2)	28(2)	-1(1)
C(14)	58(2)	106(3)	85(2)	-18(2)	28(2)	-10(2)
C(13)	73(2)	81(3)	123(4)	-35(3)	45(2)	-15(2)
C(12)	62(2)	62(2)	126(3)	-9(2)	45(2)	-2(2)
C(11a)	46(2)	54(2)	95(2)	1(2)	33(2)	-1(1)
C(11)	60(2)	67(2)	107(3)	21(2)	25(2)	17(2)
C(10)	61(2)	91(3)	78(2)	12(2)	11(2)	16(2)
C(9a)	43(2)	67(2)	85(2)	-6(2)	20(2)	0(1)
C(1′)	86(2)	56(2)	50(2)	1(1)	-2(2)	10(2)
C(2′)	112(3)	49(2)	51(2)	-3(1)	-5(2)	3(2)
C(3′)	117(3)	71(2)	59(2)	10(2)	19(2)	-7(2)
C(4′)	147(4)	83(3)	76(3)	7(2)	40(3)	13(3)
C(5')	154(4)	61(2)	73(2)	-5(2)	31(3)	14(2)
C(6')	107(3)	48(2)	62(2)	-2(2)	11(2)	2(2)
C(7′)	202(6)	61(2)	98(3)	-18(2)	34(3)	5(3)
C(8′)	183(6)	101(4)	121(4)	20(3)	38(4)	-39(4)

was added dropwise. The resulting reaction mixture was stirred for 1 hour at room temperature and then for 2 hours at 50–60°C. Triethylamine hydrochloride was separated by filtration, and the solvent from the filtrate was removed under reduced pressure. The residue, after having been washed with water, was recrystallized from 2-propanol to give a white granular solid, yield 75%, mp 189–90°C. The compounds **31** and **3m** were also prepared by the same procedure.

Crystal Structure Determination

A colorless single crystal of **3e** was obtained from methanol-toluene (2:1) by crystallization. A crystal measuring $0.5 \times 0.4 \times 0.3$ mm was used for preliminary data collection, via the Weissenberg technique. Accurate cell dimensions were subsequently refined by the least-squares method using 25 medium-angle refractions ($25^{\circ} < \theta < 35^{\circ}$) collected with an Enraf-Nonius CAD-4 diffractometer.

The crystal data were $C_{28}H_{21}O_4SP$, Mw = 484.4, monoclinic, space group $P2_1/c$, a = 12.461(3), b = 15.198(6), c = 12.920(2) Å, $\beta = 105.74(2)^\circ$, V = 2355.07 Å³, Z = 4, $D_m = 1.38$, $D_c = 1.378$ g cm⁻³, F(000) = 1008, $\mu(M_0 K_{\alpha}) = 2.3$ cm⁻¹, R = 3.9.

A total of 3672 independent reflections were measured to a maximum 2θ value of 50°. After application of Lorentz and polarization corrections, 3446 unique reflections with $[I \ge 2 \sigma(I)]$ were used in the refinement. No absorption corrections were ^aThe anisotropic displacement factor exponent takes the following form: $-2 pi^2 [h^2 a x^2 U 1 1 + ... + 2 h k a^* b^* U 12]$.

applied. The structure was solved by direct methods using SHELXS-86 [15] and refined to R index 0.041 by the full-matrix least-squares method using SHELXL-93 [16]. The hydrogens were fixed geometrically but not refined. The figure was drawn by PLUTO [17]. All the calculations were performed on a PC-486 computer.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial assistance from Hindustan Leaver Research Foundation, Bombay, India. BSR is thankful to the UGC, New Delhi, for financial assistance.

REFERENCES

[1] (a) J. D. Spivack: Brit. Patent, 2,087,399 (1982); Chem. Abstr. 97 (1981) 198374u; (b) K. Idel, H. J. Buysch, D. Margotte, H. Peters: Ger. Offen, 2,929,229 (1981); Chem. Abstr. 94 (1981) 193200n; (c) M. Rasberger: U.S. Patent, 4,322,527 (1982); Chem. Abstr. 94 (1981) 191917c; (d) J. D. Spivack, L. D. Steinhuebel, J. Heterocyclic Chem., 21, (1984), 1285.

- [2] Z. S. Ariyan, L. A. Wiles, J. Chem. Soc., 1962, 3876.
- [3] (a) L. C. Thomas, R. A. Chittenden, Chem. Soc. (London), 1961, 1913; (b) L. C. Thomas: The Interpretation of the Infrared Spectra of Organophosphorus Compounds, Heydon, London, 1974.
- [4] C. D. Reddy, R. S. Reddy, M. S. Reddy, M. Krishnaiah, K. D. Berlin, P. Sunthankar, *Phosphorus*, *Sulfur and Silicon*, 62, 1991, 1.
- [5] (a) C. D. Reddy, R. S. Reddy, C. N. Raju, M. El-Masri, K. D. Berlin, S. Subramanian, Magn. Reson. Chem., 29, 1991, 1140; (b) C. D. Reddy, K. D. Berlin, R. S. Reddy, C. N. Raju, M. ElMasri, S. Subramanian, Phosphorus, Sulfur and Silicon, 81, 1993, 61.
- [6] G. W. Buchanan, R. H. Wightman, M. Malaiyandi, Org. Magn. Reson., 19, 1982, 98.
- [7] G. C. Levy, J. D. Cargioli, J. Chem. Soc., Chem. Commun., 1970, 1663.
- [8] (a) E. L. Eliel, V. S. Rao, K. M. Pietrusiewicz, Org. Magn. Reson., 12, 1979, 461. (b) G. E. Maciel, G. B. Savistzky, J. Phys. Chem., 69, 1976, 3925. (c) S. F. Nelson, G. R. Weisman, J. Am. Chem. Soc., 98, 1976, 3281.
- [9] (a) G. W. Buchanan, D. A. Ross, J. B. Stothers, J.

Am. Chem. Soc., 88, 1966, 4301; (b) D. M. Grant, B. V. Cheney, J. Am. Chem. Soc., 89, 1967, 5315.

- [10] C. D. Reddy, C. V. N. Rao, D. B. Reddy, M. D. Thompson, J. Jasinski, E. M. Holt, K. D. Berlin, *Indian J. Chem.*, 24B, 1985, 481.
- [11] S. Maninaidu, M. Krishnaiah, K. Sivakumar, Acta Crystallogr., C48, 1992, 483.
- [12] S. Maninaidu: Ph.D. Dissertation, Sri Venkateswara University, Tirupati, India, 1990.
- [13] K. Sivakumar, K. Subramanian, S. Natarajan, M. Krishnaiah, L. Ramamurthy, Acta Crystallogr., C45, 1989, 806.
- [14] S. Shanmuga Sundara Raj, M. N. Ponnuswamy, G. Shanmugam, S. Maninaidu, M. Krishnaiah, Z. Kristallogr. 209, 1993, 604.
- [15] G. M. Sheldrick: SHELXS-86, A System of Computer Program for Solution of Crystal Structures, University of Gottingen, Germany, 1986.
- [16] G. M. Sheldrick: SHELXL-93, A System of Computer Program for Structure Refinement, Institut fuer Anorg. Chemie, Germany, 1993.
- [17] W. D. S. Motherwell: PLUTO-1978, A Program for Plotting Molecular and Crystal Structure, University of Cambridge, England, 1976. A version modified by W. Clegg, Anorganisch Chemisches Institut der Universitat Gottingen, Germany, 1978.